Density-functional study of paramagnetic iron
By using density-functional theory in combination with the coherent-potential approximation and the disordered local magnetic moment picture, we demonstrate that the competing high-temperature cubic phases of paramagnetic Fe correspond to two distinct total energy minima in the tetragonal (Bain) con...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2011-10, Vol.84 (14), p.140411, Article 140411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using density-functional theory in combination with the coherent-potential approximation and the disordered local magnetic moment picture, we demonstrate that the competing high-temperature cubic phases of paramagnetic Fe correspond to two distinct total energy minima in the tetragonal (Bain) configurational space. Both the face-centered-cubic (fcc) and the body-centered-cubic (bcc) lattices are dynamically stable, and at static conditions the fcc structure is found to be the thermodynamically stable phase. The theoretical bcc and fcc bulk parameters are in agreement with the experimental data. Due to the shallow energy minimum around the bcc structure, increasing temperature is predicted to stabilize the bcc (δ) phase against the fcc (γ) one. |
---|---|
ISSN: | 1098-0121 1550-235X 1550-235X |
DOI: | 10.1103/PhysRevB.84.140411 |