Correlated evolution between male and female primary reproductive characters in seed beetles

1. Because males and females of internally inseminating species interact directly during mating, adaptations in one sex in primary reproductive traits may trigger an evolutionary response in the other sex. Divergent postcopulatory sexual selection is considered the main driving force behind the evol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional ecology 2011-06, Vol.25 (3), p.634-640
Hauptverfasser: Rönn, Johanna Liljestrand, Katvala, Mari, Arnqvist, Göran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Because males and females of internally inseminating species interact directly during mating, adaptations in one sex in primary reproductive traits may trigger an evolutionary response in the other sex. Divergent postcopulatory sexual selection is considered the main driving force behind the evolution of many male and female reproductive traits, generating unique morphologies and physiologies that can contribute to reproductive isolation and, ultimately, speciation. 2. The focus of most previous studies of the evolution of primary reproductive characters has been male reproductive traits and ejaculate or sperm characteristics. However, in order to more fully understand the evolution of primary reproductive characters it is crucial that we also include female traits. 3. In insects, both the size and the composition of the ejaculate have been shown to influence female reproduction in numerous ways by affecting female remating behaviour, female fecundity and female life span. Here, we employ a phylogenetic comparative approach to assess correlated evolution between primary reproductive characters in males and those in females in a group of seed beetles (Chrysomelidae: Bruchinae). We further explore correlated evolution between ejaculate size and female fitness in these insects. 4. Our analyses revealed positive correlated evolution between three internal female reproductive traits and ejaculate weight as well as correlated evolution between ejaculate weight and female fitness. We discuss the causal factors behind this correlated evolution and suggest that the evolution of larger ejaculates, primarily by postcopulatory sexual selection, causes selection for larger primary sexual traits in females to allow females to more rapidly process ejaculates. This may then feedback on postcopulatory selection in males, reinforcing selection for larger ejaculates. 5. Our results show that the primary reproductive traits of males and females show correlated evolution and suggest that intersexual co-evolution may affect the evolution of female fitness.
ISSN:0269-8463
1365-2435
1365-2435
DOI:10.1111/j.1365-2435.2010.01809.x