Hierarchical Bayesian parameter estimation for cumulative prospect theory

Cumulative prospect theory (CPT  Tversky & Kahneman, 1992) has provided one of the most influential accounts of how people make decisions under risk. CPT is a formal model with parameters that quantify psychological processes such as loss aversion, subjective values of gains and losses, and subj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical psychology 2011-02, Vol.55 (1), p.84-93
Hauptverfasser: Nilsson, Håkan, Rieskamp, Jörg, Wagenmakers, Eric-Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cumulative prospect theory (CPT  Tversky & Kahneman, 1992) has provided one of the most influential accounts of how people make decisions under risk. CPT is a formal model with parameters that quantify psychological processes such as loss aversion, subjective values of gains and losses, and subjective probabilities. In practical applications of CPT, the model’s parameters are usually estimated using a single-participant maximum likelihood approach. The present study shows the advantages of an alternative, hierarchical Bayesian parameter estimation procedure. Performance of the procedure is illustrated with a parameter recovery study and application to a real data set. The work reveals that without particular constraints on the parameter space, CPT can produce loss aversion without the parameter that has traditionally been associated with loss aversion. In general, the results illustrate that inferences about people’s decision processes can crucially depend on the method used to estimate model parameters.
ISSN:0022-2496
1096-0880
1096-0880
DOI:10.1016/j.jmp.2010.08.006