Small- q phonon-mediated unconventional superconductivity in the iron pnictides

We report self-consistent calculations of the gap symmetry for iron-based high-temperature superconductors using realistic small-q phonon-mediated pairing potentials and four-band energy dispersions. When both electron and hole Fermi surface pockets are present, we obtain the nodeless s± state that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2011-03, Vol.83 (9), p.092505, Article 092505
Hauptverfasser: Aperis, A., Kotetes, P., Varelogiannis, G., Oppeneer, P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report self-consistent calculations of the gap symmetry for iron-based high-temperature superconductors using realistic small-q phonon-mediated pairing potentials and four-band energy dispersions. When both electron and hole Fermi surface pockets are present, we obtain the nodeless s± state that was first encountered in a spin-fluctuation mechanism picture. Nodal s± as well as other gap structures such as dx2−y2, s±+dx2−y2, and even a p-wave triplet state, are accessible upon doping within our phononic mechanism. Our results resolve the conflict between phase-sensitive experiments reporting a gap changing sign, attributed previously only to a nonphononic mechanism, and isotope effect measurements proving the involvement of phonons in the pairing.
ISSN:1098-0121
1550-235X
1550-235X
DOI:10.1103/PhysRevB.83.092505