Polymorph- and Size-Dependent Uptake and Toxicity of TiO2 Nanoparticles in Living Lung Epithelial Cells
The cellular uptake and distribution of five types of well‐characterized anatase and rutile TiO2 nanoparticles (NPs) in A549 lung epithelial cells is reported. Static light scattering (SLS), in‐vitro Raman microspectroscopy (μ‐Raman) and transmission electron spectroscopy (TEM) reveal an intimate co...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2011-02, Vol.7 (4), p.514-523 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cellular uptake and distribution of five types of well‐characterized anatase and rutile TiO2 nanoparticles (NPs) in A549 lung epithelial cells is reported. Static light scattering (SLS), in‐vitro Raman microspectroscopy (μ‐Raman) and transmission electron spectroscopy (TEM) reveal an intimate correlation between the intrinsic physicochemical properties of the NPs, particle agglomeration, and cellular NP uptake. It is shown that μ‐Raman facilitates chemical‐, polymorph‐, and size‐specific discrimination of endosomal‐particle cell uptake and the retention of particles in the vicinity of organelles, including the cell nucleus, which quantitatively correlates with TEM and SLS data. Depth‐profiling μ‐Raman coupled with hyperspectral data analysis confirms the location of the NPs in the cells and shows that the NPs induce modifications of the biological matrix. NP uptake is found to be kinetically activated and strongly dependent on the hard agglomeration size—not the primary particle size—which quantitatively agrees with the measured intracellular oxidative stress. Pro‐inflammatory responses are also found to be sensitive to primary particle size.
The cellular uptake and distribution of anatase and rutile TiO2 nanoparticles and the intracellular oxidative stress they induce in lung epithelial cells are shown to correlate with their intrinsic physicochemical properties. Uptake is found to be kinetically activated and strongly dependent on the hard agglomeration size. In‐vitro Raman microspectroscopy facilitates size‐ and polymorph‐specific discrimination of particles inside cells. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.201001832 |