Growth of Carbon Nanotubes from Heterometallic Palladium and Copper Catalysts

Bamboo-structured carbon nanotubes (BCNTs) were synthesized with MgO-supported Pd and Cu catalysts, doped with either Mo or W, by the catalytic chemical vapor decomposition of methane. No nanotubes were observed to grow from the catalysts in the absence of the dopant metals. Additionally, the level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2010-05, Vol.114 (18), p.8115-8119
Hauptverfasser: O’Byrne, Justin P, Li, Zhonglai, Tobin, Joseph M, Larsson, J. Andreas, Larsson, Peter, Ahuja, Rajeev, Holmes, Justin D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bamboo-structured carbon nanotubes (BCNTs) were synthesized with MgO-supported Pd and Cu catalysts, doped with either Mo or W, by the catalytic chemical vapor decomposition of methane. No nanotubes were observed to grow from the catalysts in the absence of the dopant metals. Additionally, the level of dopant in the catalysts was found to strongly affect the morphology of carbon produced. Amorphous carbon was generated on a 10 wt % Cu/5 wt % W (2:1) catalyst, while BCNTs were produced on 20 wt % Cu/5 wt % W (4:1) and a 30 wt % Cu/5 wt % W (6:1) catalysts. A pure Pd catalyst produced carbon nanofibres (CNFs), while BCNTs were able to grow from Pd/Mo catalysts. Density functional theory simulations show that the composite Cu/W and Pd/Mo bimetallic particles which generated BCNTs have similar binding energies to carbon, and comparable to metals such as Fe, Co, and Ni which are traditionally used to grow CNTs by chemical vapor deposition.
ISSN:1932-7447
1932-7455
1932-7455
DOI:10.1021/jp909309t