Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns

We reconstructed the 3D Fourier intensity distribution of monodisperse prolate nanoparticles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast x-ray pulse intercepted individual particles of random, unmeasured orientations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2010-06, Vol.104 (22), p.225501-225501, Article 225501
Hauptverfasser: Loh, N D, Bogan, M J, Elser, V, Barty, A, Boutet, S, Bajt, S, Hajdu, J, Ekeberg, T, Maia, F R N C, Schulz, J, Seibert, M M, Iwan, B, Timneanu, N, Marchesini, S, Schlichting, I, Shoeman, R L, Lomb, L, Frank, M, Liang, M, Chapman, H N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We reconstructed the 3D Fourier intensity distribution of monodisperse prolate nanoparticles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast x-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the expansion-maximization-compression framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/physrevlett.104.225501