Ab initio and scanning tunneling microscopy study of an indium-terminated GaAs(100) surface: An indium-induced surface reconstruction change in the c ( 8 × 2 ) structure

Technologically useful indium- (In) terminated c(8 x 2)-reconstructed GaAs(100) substrate surface has been studied by first-principles calculations and scanning tunneling microscopy (STM) measurements. Our total-energy calculations demonstrate the stability of four different so-called zeta a structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2010-06, Vol.81 (24), p.245305, Article 245305
Hauptverfasser: Lång, J. J. K., Punkkinen, M. P. J., Laukkanen, P., Kuzmin, M., Tuominen, V., Pessa, M., Guina, M., Väyrynen, I. J., Kokko, K., Johansson, B., Vitos, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Technologically useful indium- (In) terminated c(8 x 2)-reconstructed GaAs(100) substrate surface has been studied by first-principles calculations and scanning tunneling microscopy (STM) measurements. Our total-energy calculations demonstrate the stability of four different so-called zeta a structures with In monomer rows and In coverage between 0.5 and 2 monolayers on the GaAs(100) substrate. Thus, we introduce a surface system, which stabilizes the zeta a reconstruction. Furthermore, an interesting trend is found. Atomic structure of the c(8 x 2) reconstruction depends on the surface-layer cation and substrate volumes, which, in principle, allows to tune the surface structure by cation adsorption. This phenomenon is related to the peculiar c(8 x 2) atomic surface structure, which shows mixed surface layer, including both anions and cations, and uncommon metallic-type cations in the zeta a structure, which do not show covalent bonds. Our results predict a structural transition from the zeta structure to the zeta a structure as the surface cation size is increased at 0 K. The found transition is probably related to the disordered surface structures (consisting of zeta and zeta a building blocks) found experimentally by x-ray diffraction at room temperature. Comparison of the STM images, calculated for various c(8 x 2) models, with the former and present measured STM images of In/GaAs(100) c(8 x 2) supports the presence of stable zeta a reconstructions.
ISSN:1098-0121
1550-235X
1550-235X
DOI:10.1103/PhysRevB.81.245305