Critical Edge Behavior in Unitary Random Matrix Ensembles and the Thirty-Fourth Painlevé Transcendent
We describe a new universality class for unitary invariant random matrix ensembles. It arises in the double scaling limit of ensembles , with α > − 1/2, defined on n × n Hermitian matrices M. Assuming that the limiting mean eigenvalue density is regular and that the origin is a right endpoint of...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2008, Vol.2008, p.rnn017 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a new universality class for unitary invariant random matrix ensembles. It arises in the double scaling limit of ensembles , with α > − 1/2, defined on n × n Hermitian matrices M. Assuming that the limiting mean eigenvalue density is regular and that the origin is a right endpoint of its support, we compute the limiting eigenvalue correlation kernel in the double scaling limit as n, N → ∞ such that n2/3(n/N − 1) = O(1). We use the Deift–Zhou steepest descent method for the Riemann–Hilbert problem for polynomials orthogonal with respect to the weight |x|2αe−NV(x). Our main attention is on the construction of a local parametrix near the origin by means of the ψ-functions associated with a distinguished solution of the Painlevé XXXIV equation. |
---|---|
ISSN: | 1073-7928 1687-0247 1687-0247 |
DOI: | 10.1093/imrn/rnn017 |