A low-absorption x-ray energy filter for small-scale applications
We present an experimental and theoretical evaluation of an x-ray energy filter based on the chromatic properties of a prism-array lens (PAL). It is intended for small-scale applications such as medical imaging. The PAL approximates a Fresnel lens and allows for high efficiency compared to filters b...
Gespeichert in:
Veröffentlicht in: | Optics express 2009-07, Vol.17 (14), p.11388-11398, Article 11388 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an experimental and theoretical evaluation of an x-ray energy filter based on the chromatic properties of a prism-array lens (PAL). It is intended for small-scale applications such as medical imaging. The PAL approximates a Fresnel lens and allows for high efficiency compared to filters based on ordinary refractive lenses, however at the cost of a lower energy resolution. Geometrical optics was found to provide a good approximation for the performance of a flawless lens, but a field-propagation model was used for quantitative predictions. The model predicted a 0.29 E/E energy resolution and an intensity gain of 6.5 for a silicon PAL at 23.5 keV. Measurements with an x-ray tube showed good agreement with the model in energy resolution and peak energy, but a blurred focal line contributed to a 29% gain reduction. We believe the blurring to be caused mainly by lens imperfections, in particular at the periphery of the lens. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.17.011388 |