The lipid peroxidation metabolite 4-oxo-2-nonenal cross-links α-synuclein causing rapid formation of stable oligomers

Recently, the aldehyde 4-oxo-2-nonenal (ONE) was identified as a product of lipid peroxidation and found to be an effective protein modifier. In this in vitro study we investigated structural implications of the interaction between ONE and α-synuclein, a protein which forms intraneuronal inclusions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2009-01, Vol.378 (4), p.872-876
Hauptverfasser: Näsström, Tomas, Wahlberg, Therese, Karlsson, Mikael, Nikolajeff, Fredrik, Lannfelt, Lars, Ingelsson, Martin, Bergström, Joakim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, the aldehyde 4-oxo-2-nonenal (ONE) was identified as a product of lipid peroxidation and found to be an effective protein modifier. In this in vitro study we investigated structural implications of the interaction between ONE and α-synuclein, a protein which forms intraneuronal inclusions in neurodegenerative disorders such as Parkinson’s disease and dementia with Lewy bodies. Our results demonstrate that ONE induced an almost complete conversion of monomeric α-synuclein into 40–80 nm wide and 6–8 nm high soluble β-sheet-rich oligomers with a molecular weight of ∼2000 kDa. Furthermore, the ONE-induced α-synuclein oligomers displayed a high stability and were not sensitive to treatment with sodium dodecyl sulfate, indicating that ONE stabilized the oligomers by cross-linking individual α-synuclein molecules. Despite prolonged incubation the oligomers did not continue to aggregate into a fibrillar state, thus suggesting that these α-synuclein species were not on a fibrillogenic pathway.
ISSN:0006-291X
1090-2104
1090-2104
DOI:10.1016/j.bbrc.2008.12.005