Ab initio equation of state for the body-centered-cubic phase of iron at high pressure and temperature
The solid inner core of the Earth consists mostly of iron. There is accumulating evidence that, at the extreme pressures and temperatures of the deep Earth interior, iron stabilizes in the body-centered-cubic phase. However, experimental study of iron at those conditions is very difficult at best. W...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2008-09, Vol.78 (10), p.104107, Article 104107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solid inner core of the Earth consists mostly of iron. There is accumulating evidence that, at the extreme pressures and temperatures of the deep Earth interior, iron stabilizes in the body-centered-cubic phase. However, experimental study of iron at those conditions is very difficult at best. We demonstrate that our ab initio approach is capable of providing volumetric data on iron in very good agreement with experiment at low temperature and high pressure. Since our approach treats high-temperature effects explicitly, this allows us to count on similar precision also at high temperature and high pressure. We perform ab initio molecular-dynamics simulations at a number of volume-temperature conditions and compute the corresponding pressures. These points are then fitted with an equation of state. A number of parameters are computed and compared with existing data. The obtained equation of state for high pressure and temperature nonmagnetic body-centered-cubic phase allows the computation of properties of iron under extreme conditions of the Earth's inner core. |
---|---|
ISSN: | 1098-0121 1550-235X 1550-235X |
DOI: | 10.1103/PhysRevB.78.104107 |