Problems of classifying associative or Lie algebras over a field of characteristic not 2 and finite metabelian groups are wild
Let F be a field of characteristic different from 2. It is shown that the problems of classifying (i) local commutative associative algebras over F with zero cube radical, (ii) Lie algebras over F with central commutator subalgebra of dimension 3, and (iii) finite p-groups of exponent p with central...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of linear algebra 2009, Vol.18, p.516 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let F be a field of characteristic different from 2. It is shown that the problems of classifying
(i) local commutative associative algebras over F with zero cube radical,
(ii) Lie algebras over F with central commutator subalgebra of dimension 3, and
(iii) finite p-groups of exponent p with central commutator subgroup of order are hopeless since each of them contains
• the problem of classifying symmetric bilinear mappings UxU → V , or
• the problem of classifying skew-symmetric bilinear mappings UxU → V ,
in which U and V are vector spaces over F (consisting of p elements for p-groups (iii)) and V is 3-dimensional. The latter two problems are hopeless since they are wild; i.e., each of them contains the problem of classifying pairs of matrices over F up to similarity. |
---|---|
ISSN: | 1081-3810 1537-9582 |
DOI: | 10.13001/1081-3810.1329 |