Problems of classifying associative or Lie algebras over a field of characteristic not 2 and finite metabelian groups are wild

Let F be a field of characteristic different from 2. It is shown that the problems of classifying (i) local commutative associative algebras over F with zero cube radical, (ii) Lie algebras over F with central commutator subalgebra of dimension 3, and (iii) finite p-groups of exponent p with central...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of linear algebra 2009, Vol.18, p.516
Hauptverfasser: Belitskii, Genrich, Dmytryshyn, Andrii, Lipyanski, Ruvim, Sergeichuk, Vladimir, Tsurkov, Arkady
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F be a field of characteristic different from 2. It is shown that the problems of classifying (i) local commutative associative algebras over F with zero cube radical, (ii) Lie algebras over F with central commutator subalgebra of dimension 3, and (iii) finite p-groups of exponent p with central commutator subgroup of order   are hopeless since each of them contains • the problem of classifying symmetric bilinear mappings UxU → V , or • the problem of classifying skew-symmetric bilinear mappings UxU → V , in which U and V are vector spaces over F (consisting of p elements for p-groups (iii)) and V is 3-dimensional. The latter two problems are hopeless since they are wild; i.e., each of them contains the problem of classifying pairs of matrices over F up to similarity.
ISSN:1081-3810
1537-9582
DOI:10.13001/1081-3810.1329