The intricacy of avoiding arrays is 2
Let A be any n × n array on the symbols [ n ] , with at most one symbol in each cell. An n × n Latin square L avoids A if all entries in L differ from the corresponding entries in A. If A is split into two arrays B and C in a special way, there are Latin squares L B and L C avoiding B and C, respect...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2006-03, Vol.306 (5), p.531-532 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A be any
n
×
n
array on the symbols
[
n
]
, with at most one symbol in each cell. An
n
×
n
Latin square
L avoids A if all entries in
L differ from the corresponding entries in
A. If
A is split into two arrays
B and
C in a special way, there are Latin squares
L
B
and
L
C
avoiding
B and
C, respectively. In other words, the
intricacy of avoiding arrays is 2, the number of arrays into which
A has to be split. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2005.11.009 |