Avoiding Arrays of Odd Order by Latin Squares
We prove that there is a constant c such that, for each positive integer k, every (2k + 1) × (2k + 1) array A on the symbols (1,. . .,2k+1) with at most c(2k+1) symbols in every cell, and each symbol repeated at most c(2k+1) times in every row and column is avoidable; that is, there is a (2k+1) × (2...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2013-03, Vol.22 (2), p.184-212 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that there is a constant c such that, for each positive integer k, every (2k + 1) × (2k + 1) array A on the symbols (1,. . .,2k+1) with at most c(2k+1) symbols in every cell, and each symbol repeated at most c(2k+1) times in every row and column is avoidable; that is, there is a (2k+1) × (2k+1) Latin square S on the symbols 1,. . .,2k+1 such that, for each i,j ∈ {1,. . .,2k+1}, the symbol in position (i,j) of S does not appear in the corresponding cell in A. This settles the last open case of a conjecture by Häggkvist. Using this result, we also show that there is a constant ρ, such that, for any positive integer n, if each cell in an n × n array B is assigned a set of m ≤ ρ n symbols, where each set is chosen independently and uniformly at random from {1,. . .,n}, then the probability that B is avoidable tends to 1 as n → ∞. |
---|---|
ISSN: | 0963-5483 1469-2163 1469-2163 |
DOI: | 10.1017/S0963548312000570 |