Partial Latin Squares Are Avoidable

A square array is avoidable if for each set of n symbols there is an n × n Latin square on these symbols which differs from the array in every cell. The main result of this paper is that for m ≥ 2 any partial Latin square of order 4 m − 1 is avoidable, thus concluding the proof that any partial Lati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2011-09, Vol.15 (3), p.485-497
1. Verfasser: Öhman, Lars-Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A square array is avoidable if for each set of n symbols there is an n × n Latin square on these symbols which differs from the array in every cell. The main result of this paper is that for m ≥ 2 any partial Latin square of order 4 m − 1 is avoidable, thus concluding the proof that any partial Latin square of order at least 4 is avoidable.
ISSN:0218-0006
0219-3094
0219-3094
DOI:10.1007/s00026-011-0106-5