Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves

Regulation of NAD- and NADP-dependent isocitrate dehydrogenases (NAD-ICDH, EC 1.1.1.41, and NADP-ICDH, EC 1.1.1.42) by the level of reduced and oxidized pyridine nucleotides has been investigated in pea ( Pisum sativum L.) leaves. The affinities of mitochondrial and cytosolic ICDH enzymes to substra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2003-09, Vol.1606 (1), p.117-125
Hauptverfasser: Igamberdiev, Abir U., Gardeström, Per
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regulation of NAD- and NADP-dependent isocitrate dehydrogenases (NAD-ICDH, EC 1.1.1.41, and NADP-ICDH, EC 1.1.1.42) by the level of reduced and oxidized pyridine nucleotides has been investigated in pea ( Pisum sativum L.) leaves. The affinities of mitochondrial and cytosolic ICDH enzymes to substrates and inhibitors were determined on partially purified preparations in forward and reverse directions. From the kinetic data, it follows that NADP +- and NAD +-dependent isocitrate dehydrogenases in mitochondria represent a system strongly responding to the intramitochondrial NADPH and NADH levels. The NADPH, NADP +, NADH and NAD + concentrations were determined by subcellular fractionation of pea leaf protoplasts using membrane filtration in mitochondria and cytosol in darkness and in the light under saturating and limiting CO 2 conditions. The cytosolic NADPH/NADP ratio was about 1 and almost constant both in darkness and in the light. In mitochondria, the NADPH/NADP ratio was low in darkness (0.2) and increased in the light, reaching 3 in limiting CO 2 conditions compared to 1 in saturating CO 2. At high reduction levels of NADP and NAD observed at limiting CO 2 in the light, i.e. when photorespiratory glycine is the main mitochondrial substrate, isocitrate oxidation in mitochondria will be suppressed and citrate will be transported to the cytosol (‘citrate valve’), where the cytosolic NADP-ICDH supplies 2-oxoglutarate for the photorespiratory ammonia refixation.
ISSN:0005-2728
0006-3002
1879-2650
1879-2650
DOI:10.1016/S0005-2728(03)00106-3