Sorting Nexin 9 Participates in Clathrin-mediated Endocytosis through Interactions with the Core Components

Sorting nexin 9 (SNX9) belongs to a family of proteins, the sorting nexins, that are characterized by the presence of a subclass of the phosphoinositide-binding phox domain. SNX9 has in its amino terminus a Src homology 3 domain and a region with predicted low complexity followed by a carboxyl-termi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-11, Vol.278 (47), p.46772-46781
Hauptverfasser: Lundmark, Richard, Carlsson, Sven R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sorting nexin 9 (SNX9) belongs to a family of proteins, the sorting nexins, that are characterized by the presence of a subclass of the phosphoinositide-binding phox domain. SNX9 has in its amino terminus a Src homology 3 domain and a region with predicted low complexity followed by a carboxyl-terminal part containing the phox domain. We previously found that SNX9 is one of the major proteins in hematopoietic cells that binds to the αand β2-appendages of adaptor protein complex 2 (AP-2), a protein with a critical role in the formation of clathrin-coated vesicles at the plasma membrane. In the present study we show that clathrin and dynamin-2, two other essential molecules in the endocytic process, also interact with SNX9. We found that both AP-2 and clathrin bind to the low complexity region in SNX9 in a cooperative manner, whereas dynamin-2 binds to the Src homology 3 domain. In the cytosol, SNX9 is present in a 14.5 S complex containing dynamin-2 and an unidentified 41-kDa protein. In HeLa cells, SNX9 co-localized with both AP-2 and dynamin-2 at the plasma membrane or on vesicular structures derived from it but not with the early endosomal marker EEA1 or with AP-1. The results suggest that SNX9 may be recruited together with dynamin-2 and become co-assembled with AP-2 and clathrin at the plasma membrane. Overexpression in both K562 and HeLa cells of truncated forms of SNX9 interfered with the uptake of transferrin, consistent with a role of SNX9 in endocytosis.
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1074/jbc.M307334200