Fluctuation-induced drift in a gravitationally tilted optical lattice

Experimental and theoretical studies are made of Brownian particles trapped in a periodic potential, which is very slightly tilted due to gravity. In the presence of fluctuations, these will trigger a measurable average drift along the direction of the tilt. The magnitude of the drift varies with th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2010-09, Vol.82 (3 Pt 1), p.031136-031136, Article 031136
Hauptverfasser: Zelan, M, Hagman, H, Karlsson, K, Dion, C M, Kastberg, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimental and theoretical studies are made of Brownian particles trapped in a periodic potential, which is very slightly tilted due to gravity. In the presence of fluctuations, these will trigger a measurable average drift along the direction of the tilt. The magnitude of the drift varies with the ratio between the bias force and the trapping potential. This can be closely compared to a theoretical model system, based on a Fokker-Planck-equation formalism. We show that the level of control and measurement precision we have in our system, which is based on cold atoms trapped in a three-dimensional dissipative optical lattice, makes the experimental setup suitable as a testbed for fundamental statistical physics. We simulate the system with a very simplified and general classical model, as well as with an elaborate semiclassical Monte Carlo simulation. In both cases, we achieve good qualitative agreement with experimental data.
ISSN:1539-3755
1550-2376
1095-3787
1063-651X
1550-2376
DOI:10.1103/PhysRevE.82.031136