Heterogeneous attachment strategies optimize the topology of dynamic wireless networks

In optimizing the topology of wireless networks built of a dynamic set of spatially embedded agents, there are many trade-offs to be dealt with. The network should preferably be as small (in the sense that the average, or maximal, pathlength is short) as possible, it should be robust to failures, no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2010-02, Vol.73 (4), p.597-604
Hauptverfasser: Holme, P., Kim, B. J., Fodor, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In optimizing the topology of wireless networks built of a dynamic set of spatially embedded agents, there are many trade-offs to be dealt with. The network should preferably be as small (in the sense that the average, or maximal, pathlength is short) as possible, it should be robust to failures, not consume too much power, and so on. In this paper, we investigate simple models of how agents can choose their neighbors in such an environment. In our model of attachment, we can tune from one situation where agents prefer to attach to others in closest proximity, to a situation where agents attach to random others regardless of distance (which thus are, on average, further away than the connections to the spatial neighbors). We evaluate this scenario with several performance measures and find that the optimal topologies, for most of the quantities, is obtained for strategies resulting in a mix of most local and a few random connections.
ISSN:1434-6028
1434-6036
1434-6036
DOI:10.1140/epjb/e2010-00049-x