Wnt-regulated temporal control of BMP exposure directs the choice between neural plate border and epidermal fate

The non-neural ectoderm is divided into neural plate border and epidermal cells. At early blastula stages, Wnt and BMP signals interact to induce epidermal fate, but when and how cells initially acquire neural plate border fate remains poorly defined. We now provide evidence in chick that the specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2009-01, Vol.136 (1), p.73-83
Hauptverfasser: Patthey, Cédric, Edlund, Thomas, Gunhaga, Lena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The non-neural ectoderm is divided into neural plate border and epidermal cells. At early blastula stages, Wnt and BMP signals interact to induce epidermal fate, but when and how cells initially acquire neural plate border fate remains poorly defined. We now provide evidence in chick that the specification of neural plate border cells is initiated at the late blastula stage and requires both Wnt and BMP signals. Our results indicate, however, that at this stage BMP signals can induce neural plate border cells only when Wnt activity is blocked, and that the two signals in combination generate epidermal cells. We also provide evidence that Wnt signals do not play an instructive role in the generation of neural plate border cells, but promote their generation by inducing BMP gene expression, which avoids early simultaneous exposure to the two signals and generates neural plate border instead of epidermal cells. Thus, specification of neural plate border cells is mediated by a novel Wnt-regulated BMP-mediated temporal patterning mechanism.
ISSN:0950-1991
1477-9129
1477-9129
DOI:10.1242/dev.025890