Bioinformatics strategies for cDNA-microarray data processing
Pre-processing plays a vital role in cDNA-microarray data analysis. Without proper pre-processing it is likely that the biological conclusions will be misleading. However, there are many alternatives and in order to choose a proper pre-processing procedure it is necessary to understand the effect...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: |
Pre-processing plays a vital role in cDNA-microarray data analysis. Without proper pre-processing it is likely that the biological conclusions will be misleading. However, there are many alternatives and in order to choose a proper pre-processing procedure it is necessary to understand the effect of different methods. This chapter discusses several pre-processing steps, including image analysis, background correction, normalization, and filtering. Spike-in data are used to illustrate how different procedures affect the analytical ability to detect differentially expressed genes and estimate their regulation. The result shows that pre-processing has a major impact on both the experiment’s sensitivity andits bias. However, general recommendations are hard to give, since pre-processing consists of several actions that are highly dependent on each other. Furthermore, it is likely that pre-processing have a major impact on downstream analysis, such as clustering and classification, and pre-processing methods should be developed and evaluated with this in mind. |
---|