inDrops-2: a flexible, versatile and cost-efficient droplet microfluidic approach for high-throughput scRNA-seq of fresh and preserved clinical samples

The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2025-01, Vol.53 (2)
Hauptverfasser: Juzenas, Simonas, Goda, Karolis, Kiseliovas, Vaidotas, Zvirblyte, Justina, Quintinal-Villalonga, Alvaro, Siurkus, Juozas, Nainys, Juozas, Mazutis, Linas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples. Moreover, as the scale of single-cell sequencing continues to expand, accommodating diverse workflows and cost-effective multi-biospecimen profiling becomes more critical. Herein, we present inDrops-2, an open-source scRNA-seq technology designed to profile live or preserved cells with a sensitivity matching that of state-of-the-art commercial systems but at a 6-fold lower cost. We demonstrate the flexibility of inDrops-2, by implementing two prominent scRNA-seq protocols, based on exponential and linear amplification of barcoded-complementary DNA, and provide useful insights into the advantages and disadvantages inherent to each approach. We applied inDrops-2 to simultaneously profile multiple human lung carcinoma samples that had been subjected to cell preservation, long-term storage and multiplexing to obtain a multiregional cellular profile of the tumor microenvironment. The scalability, sensitivity and cost efficiency make inDrops-2 stand out among other droplet-based scRNA-seq methods, ideal for large-scale studies on rare cell molecular signatures.
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/gkae1312