On the convolution of convex 2-gons

We study the convolution of functions of the formfα(z):=(1+z1−z)α−12α, which map the open unit disk of the complex plane onto polygons of 2 edges when α∈(0,1). Inspired by a work of Cima, we study the limits of convolutions of finitely many fα and the convolution of arbitrary unbounded convex mappin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-10, Vol.538 (2), p.128387, Article 128387
Hauptverfasser: Chuaqui, Martin, Hernández, Rodrigo, Llinares, Adrián, Mas, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the convolution of functions of the formfα(z):=(1+z1−z)α−12α, which map the open unit disk of the complex plane onto polygons of 2 edges when α∈(0,1). Inspired by a work of Cima, we study the limits of convolutions of finitely many fα and the convolution of arbitrary unbounded convex mappings. The analysis for the latter is based on the notion of angle at infinity, which provides an estimate for the growth at infinity and determines whether the convolution is bounded or not. A generalization to an arbitrary number of factors shows that the convolution of n randomly chosen unbounded convex mappings has a probability of 1/n! of remaining unbounded. We provide the precise asymptotic behavior of the coefficients of the functions fα.
ISSN:0022-247X
1096-0813
1096-0813
DOI:10.1016/j.jmaa.2024.128387