Explaining Recurrent Machine Learning Models: Integral Privacy Revisited

We have recently introduced a privacy model for statistical and machine learning models called integral privacy. A model extracted from a database or, in general, the output of a function satisfies integral privacy when the number of generators of this model is sufficiently large and diverse. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Torra, Vicenç, Navarro-Arribas, Guillermo, Galván, Edgar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have recently introduced a privacy model for statistical and machine learning models called integral privacy. A model extracted from a database or, in general, the output of a function satisfies integral privacy when the number of generators of this model is sufficiently large and diverse. In this paper we show how the maximal c-consensus meets problem can be used to study the databases that generate an integrally private solution. We also introduce a definition of integral privacy based on minimal sets in terms of this maximal c-consensus meets problem.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-57521-2_5