Calcium Fluxes in Work-Related Muscle Disorder: Implications from a Rat Model
Introduction. Ca2+ regulatory excitation-contraction coupling properties are key topics of interest in the development of work-related muscle myalgia and may constitute an underlying cause of muscle pain and loss of force generating capacity. Method. A well-established rat model of high repetition h...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2019, Vol.2019 (2019), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction. Ca2+ regulatory excitation-contraction coupling properties are key topics of interest in the development of work-related muscle myalgia and may constitute an underlying cause of muscle pain and loss of force generating capacity. Method. A well-established rat model of high repetition high force (HRHF) work was used to investigate if such exposure leads to an increase in cytosolic Ca2+ concentration ([Ca2+]i) and changes in sarcoplasmic reticulum (SR) vesicle Ca2+ uptake and release rates. Result. Six weeks exposure of rats to HRHF increased indicators of fatigue, pain behaviors, and [Ca2+]i, the latter implied by around 50–100% increases in pCam, as well as in the Ca2+ handling proteins RyR1 and Casq1 accompanied by an ∼10% increased SR Ca2+ uptake rate in extensor and flexor muscles compared to those of control rats. This demonstrated a work-related altered myocellular Ca2+ regulation, SR Ca2+ handling, and SR protein expression. Discussion. These disturbances may mirror intracellular changes in early stages of human work-related myalgic muscle. Increased uptake of Ca2+ into the SR may reflect an early adaptation to avoid a sustained detrimental increase in [Ca2+]i similar to the previous findings of deteriorated Ca2+ regulation and impaired function in fatigued human muscle. |
---|---|
ISSN: | 2314-6133 2314-6141 2314-6141 |
DOI: | 10.1155/2019/5040818 |