Outcome of microdialysis sampling on liver surface and parenchyma

Abstract Background To investigate whether surface microdialysis (μD) sampling in probes covered by a plastic film, as compared to noncovered and to intraparenchymatous probes, would increase the technique's sensitivity for pathophysiologic events occurring in a liver ischemia-reperfusion model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 2016-02, Vol.200 (2), p.480-487
Hauptverfasser: Abrahamsson, Pernilla, PhD, Johansson, Göran, MS, Åberg, Anna-Maja, PhD, Winsö, Ola, MD, PhD, Blind, Per-Jonas, MD, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background To investigate whether surface microdialysis (μD) sampling in probes covered by a plastic film, as compared to noncovered and to intraparenchymatous probes, would increase the technique's sensitivity for pathophysiologic events occurring in a liver ischemia-reperfusion model. Placement of μD probes in the parenchyma of an organ, as is conventionally done, may cause adverse effects, e.g., bleeding, possibly influencing outcome. Methods A transient ischemia-reperfusion model of the liver was used in six anesthetized normoventilated pigs. μD probes were placed in the parenchyma and on the liver surface. Surface probes were either left uncovered or were covered by plastic film. Results Lactate and glucose levels were significantly higher in plastic film covered probes than in uncovered surface probes throughout the ischemic period. Glycerol levels were significantly higher in plastic film covered probes than in uncovered surface probes at 30 and 45 min into ischemia. Conclusions Covering the μD probe increases the sensibility of the μD–technique in monitoring an ischemic insult and reperfusion in the liver. These findings confirm that the principle of surface μD works, possibly replacing need of intraparenchymatous placement of μD probes. Surface μD seemingly allows, noninvasively from an organ's surface, via the extracellular compartment, assessment of intracellular metabolic events. The finding that covered surface μD probes allows detection of local metabolic changes earlier than do intraparenchymatous probes, merit further investigation focusing on μD probe design.
ISSN:0022-4804
1095-8673
1095-8673
DOI:10.1016/j.jss.2015.09.009