Avoiding bias from aggregate measures of exposure

Background: Sometimes in descriptive epidemiology or in the evaluation of a health intervention policy change, proportions exposed to a risk factor or to an intervention are used as explanatory variables in log-linear regressions for disease incidence or mortality. Aim: To demonstrate how estimates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of epidemiology and community health (1979) 2007-05, Vol.61 (5), p.461-463
Hauptverfasser: Duffy, Stephen W, Jonsson, Håkan, Agbaje, Olorunsola F, Pashayan, Nora, Gabe, Rhian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Sometimes in descriptive epidemiology or in the evaluation of a health intervention policy change, proportions exposed to a risk factor or to an intervention are used as explanatory variables in log-linear regressions for disease incidence or mortality. Aim: To demonstrate how estimates from such models can be substantially inaccurate as estimates of the effect of the risk factor or intervention at individual level. To show how the individual level effect can be correctly estimated by excess relative risk models. Methods: The problem and solution are demonstrated using data on prostate-specific antigen testing and prostate cancer incidence.
ISSN:0143-005X
1470-2738
DOI:10.1136/jech.2006.050203