Priority Operators for Fairshare Scheduling
Collaborative resource sharing in distributed computing requires scalable mechanisms for allocation and control of user quotas. Decentralized fairshare prioritization is a technique for enforcement of user quotas that can be realized without centralized control. The technique is based on influencing...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Collaborative resource sharing in distributed computing requires scalable mechanisms for allocation and control of user quotas. Decentralized fairshare prioritization is a technique for enforcement of user quotas that can be realized without centralized control. The technique is based on influencing the job scheduling order of local resource management systems using an algorithm that establishes a semantic for prioritization of jobs based on the individual distances between user’s quota allocations and user’s historical resource usage (i.e. intended and current system state). This work addresses the design and evaluation of priority operators, mathematical functions to quantify fairshare distances, and identify a set of desirable characteristics for fairshare priority operators. In addition, this work also proposes a set of operators for fairshare prioritization, establishes a methodology for verification and evaluation of operator characteristics, and evaluates the proposed operator set based on this mathematical framework. Limitations in the numerical representation of scheduling factor values are identified as a key challenge in priority operator formulation, and it is demonstrated that the contributed priority operators (the Sigmoid operator family) behave robustly even in the presence of severe resolution limitations. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-15789-4_5 |