Solving the supply of resveratrol tetramers from Papua New Guinean rainforest anisoptera species that inhibit bacterial type Ill secretion systems

ABSTRACT: The supply of (−)-hopeaphenol (1) was achieved via enzymatic biotransformation in order to provide material for preclinical investigation. High-throughput screen- ing of a prefractionated natural product library aimed to identify compounds that inhibit the bacterial virulence type III sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of natural products (Washington, D.C.) D.C.), 2014-12, Vol.77 (12), p.2633
Hauptverfasser: Davis, Rohan A., Beattie, Karren D., Xu, Min, Yang, Xinzhou, Yin, Sheng, Holla, Harish, Healy, Peter C., Sykes, Melissa, Shelper, Todd, Avery, Vicky M., Elofsson, Mikael, Sundin, Charlotta, Quinn, Ronald J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT: The supply of (−)-hopeaphenol (1) was achieved via enzymatic biotransformation in order to provide material for preclinical investigation. High-throughput screen- ing of a prefractionated natural product library aimed to identify compounds that inhibit the bacterial virulence type III secretion system (T3SS) identified several fractions derived from two Papua New Guinean Anisoptera species, showing activity against Yersinia pseudotuberculosis outer proteins E and H (YopE and YopH). Bioassay-directed isolation from the leaves of A. thurifera, and similarly A. polyandra, resulted in three known resveratrol tetramers, (−)-hopeaphenol (1), vatalbinoside A (2), and vaticanol B (3). Compounds 1−3 displayed IC50 values of 8.8, 12.5, and 9.9 μM in a luminescent reporter-gene assay (YopE) and IC50 values of 2.9, 4.5, and 3.3 μM in an enzyme-based YopH assay, respectively, which suggested that they could potentially act against the T3SS in Yersinia. The structures of 1−3 were confirmed through a combination of spectrometric, chemical methods, and single-crystal X-ray structure determinations of the natural product 1 and the permethyl ether analogue of 3. The enzymatic hydrolysis of the β-glycoside 2 to the aglycone 1 was achieved through biotransformation using the endogenous leaf enzymes. This significantly enhanced the yield of the target bioactive natural product from 0.08% to 1.3% and facilitates ADMET studies of (−)-hopeaphenol (1).
ISSN:0163-3864
1520-6025
DOI:10.1021/np500433z