Biochemical conversion of biomass to biofuels: pretreatment–detoxification–hydrolysis–fermentation

The use of lignocellulosic materials to replace fossil resources for the industrial production of fuels, chemicals, and materials is increasing. The carbohydrate composition of lignocellulose (i.e. cellulose and hemicellulose) is an abundant source of sugars. However, due to the feedstock recalcitra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Soudham, Venkata Prabhakar
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of lignocellulosic materials to replace fossil resources for the industrial production of fuels, chemicals, and materials is increasing. The carbohydrate composition of lignocellulose (i.e. cellulose and hemicellulose) is an abundant source of sugars. However, due to the feedstock recalcitrance, rigid and compact structure of plant cell walls, access to polysaccharides is hindered and release of fermentable sugars has become a bottle-neck. Thus, to overcome the recalcitrant barriers, thermochemical pretreatment with an acid catalyst is usually employed for the physical or chemical disruption of plant cell wall. After pretreatment, enzymatic hydrolysis is the preferred option to produce sugars that can be further converted into liquid fuels (e.g. ethanol) via fermentation by microbial biocatalysts. However, during acid pretreatment, several inhibitory compounds namely furfural, 5-hydroxymethyl furfural, phenols, and aliphatic acids are released from the lignocellulose components. The presence of these compounds can greatly effect both enzymatic hydrolysis and microbial fermentation. For instance, when Avicel cellulose and acid treated spruce wood hydrolysate were mixed, 63% decrease in the enzymatic hydrolysis efficiency was observed compared to when Avicel was hydrolyzed in aqueous citrate buffer. In addition, the acid hydrolysates were essentially non-fermentable. Therefore, the associated problems of lignocellulose conversion can be addressed either by using feedstocks that are less recalcitrant or by developing efficient pretreatment techniques that do not cause formation of inhibitory byproducts and simultaneously give high sugar yields. A variety of lignocellulose materials including woody substrates (spruce, pine, and birch), agricultural residues (sugarcane bagasse and reed canary grass), bark (pine bark), and transgenic aspens were evaluated for their saccharification potential. Apparently, woody substrates were more recalcitrant than the rest of the species and bark was essentially amorphous. However, the saccharification efficiency of these substrates varied based on the pretreatment method used. For instance, untreated reed canary grass was more recalcitrant than woody materials whereas the acid treated reed canary grass gave a higher sugar yield (64%) than the woody substrates (max 34%). Genetic modification of plants was beneficial, since under similar pretreatment and enzymatic hydrolysis conditions, up to 28% higher sugar production