Some features of the trace metal biogeochemistry in the deep-sea hydrothermal vent fields (Menez Gwen, Rainbow, Broken Spur at the MAR and 9°50′N at the EPR): A synthesis

Along with summarizing the published literature and our own data some new results on properties of the trace metal biogeochemistry in the deep-sea hydrothermal ecosystems at the Mid-Atlantic Ridge (MAR) and East Pacific Rise (EPR) are shown. Differences in mean concentrations of big group of trace m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine systems 2013-10, Vol.126 (SI), p.94-105
Hauptverfasser: Demina, Ludmila L., Holm, Nils G., Galkin, Sergey V., Lein, Alla Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Along with summarizing the published literature and our own data some new results on properties of the trace metal biogeochemistry in the deep-sea hydrothermal ecosystems at the Mid-Atlantic Ridge (MAR) and East Pacific Rise (EPR) are shown. Differences in mean concentrations of big group of trace metals (Fe, Mn, Zn, Cu, Ni, Cr, Co, As, Pb, Cd, Ag, Hg) between the biotope water of the low- and high-temperature hydrothermal vent fields were firstly revealed. The same trace metals were studied in different groups of organisms within different temperature zones at one and the same vent field (9°50′N EPR), as well as in fauna inhabiting geochemically different vent sites. Distribution patterns of Fe, Mn, Zn, Cu, Cd, Pb, Ag, Ni, Cr, Co, As, Se, Sb, and Hg in different taxa gave an evidence of the influence of environmental and biological parameters on their bioaccumulation in organisms. Among the animals a particular “champion” with respect to the trace metal content was found to be a polychaeta Alvinella pompejana that inhabits the hottest places of the vent sulfide chimneys of the 9°50′N field, EPR. New data on the trace metal distribution between soft tissues and carbonate shell let us estimate a role of biomineralization in the accumulation of metals in the Bathimodiolus mussels. Contrasting geochemical behavior was revealed for Cu that is enriched in soft tissues of mussels and depleted in shells, on the one hand, and Mn that is accumulated almost totally in mussel shells, on the other hand. Deep-sea hydrothermal biological communities demonstrate a strong concentration function, and bioconcentration factors (BCF) of trace metals estimated for Bathimodiolus mussels collected at the four hydrothermal fields vary within the limits of n102–n105 and are similar to that of the littoral mussels. Due to this and to the high values of biomasses per square meter, the hydrothermal fauna may be considered as a newly discovered biological filter of the oceans. ► Trace metal biogeochemistry in both the shallow-water and deep-sea hydrothermal vent ecosystems.
ISSN:0924-7963
1879-1573
1879-1573
DOI:10.1016/j.jmarsys.2012.09.005