Multiconfigurational Hartree-Fock close-coupling ansatz: Application to the argon photoionization cross section and delays

We present a robust, ab initio method for addressing atom-light interactions and apply it to photoionization of argon. We use a close-coupling ansatz constructed on a multiconfigurational Hartree-Fock description of localized states and B-spline expansions of the electron radial wave functions. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2013-02, Vol.87 (2), p.023420, Article 023420
Hauptverfasser: Carette, T., Dahlström, J. M., Argenti, L., Lindroth, E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a robust, ab initio method for addressing atom-light interactions and apply it to photoionization of argon. We use a close-coupling ansatz constructed on a multiconfigurational Hartree-Fock description of localized states and B-spline expansions of the electron radial wave functions. In this implementation, the general many-electron problem can be tackled thanks to the use of the ATSP2K libraries [C. Froese Fischer et al., Comput. Phys. Commun. 176, 559 (2007)]. In the present contribution, we combine this method with exterior complex scaling, thereby allowing for the computation of the complex partial amplitudes that encode the whole dynamics of the photoionization process. The method is validated on the 3s3p(6)np series of resonances converging to the 3s extraction. Then, it is used for computing the energy dependent differential atomic delay between 3p and 3s photoemission, and agreement is found with the measurements of Guenot et al. [Phys. Rev. A 85, 053424 (2012)]. The effect of the presence of resonances in the one-photon spectrum on photoionization delay measurements is studied. DOI: 10.1103/PhysRevA.87.023420
ISSN:1050-2947
1094-1622
1094-1622
DOI:10.1103/PhysRevA.87.023420