Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden)

The Swedish Nuclear Fuel and Waste Management Company has recently submitted an application for a license to construct a final repository for spent nuclear fuel, at approximately 500 m depth in crystalline bedrock. Migration pathways through the geosphere barrier are geometrically complex, with segm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2012-12, Vol.20 (8), p.1467-1481
Hauptverfasser: Selroos, Jan-Olof, Painter, Scott L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Swedish Nuclear Fuel and Waste Management Company has recently submitted an application for a license to construct a final repository for spent nuclear fuel, at approximately 500 m depth in crystalline bedrock. Migration pathways through the geosphere barrier are geometrically complex, with segments in fractured rock, deformation zones, backfilled tunnels, and near-surface soils. Several simplifications of these complex migration pathways were used in the assessments of repository performance that supported the license application. Specifically, in the geosphere transport calculations, radionuclide transport in soils and tunnels was neglected, and deformation zones were assumed to have transport characteristics of fractured rock. The effects of these simplifications on the projected performance of the geosphere barrier system are addressed. Geosphere performance is shown to be sensitive to how transport characteristics of deformation zones are conceptualized and incorporated into the model. Incorporation of advective groundwater travel time within backfilled tunnels reduces radiological dose from non-sorbing radionuclides such as I-129, while sorption in near-surface soils reduces radiological doses from sorbing radionuclides such as Ra-226. These results help quantify the degree to which geosphere performance was pessimistically assessed, and provide some guidance on how future studies to reduce uncertainty in geosphere performance may be focused.
ISSN:1431-2174
1435-0157
1435-0157
DOI:10.1007/s10040-012-0888-5