Efficient Intracellular Delivery of Nucleic Acid Pharmaceuticals Using Cell-Penetrating Peptides

Over the last 20 years, researchers have designed or discovered peptides that can permeate membranes and deliver exogenous molecules inside a cell. These peptides, known as cell-penetrating peptides (CPPs), typically consist of 6–30 residues, including HIV TAT peptide, penetratin, oligoarginine, tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research 2012-07, Vol.45 (7), p.1132-1139
Hauptverfasser: Nakase, Ikuhiko, Akita, Hidetaka, Kogure, Kentaro, Gräslund, Astrid, Langel, Ülo, Harashima, Hideyoshi, Futaki, Shiroh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the last 20 years, researchers have designed or discovered peptides that can permeate membranes and deliver exogenous molecules inside a cell. These peptides, known as cell-penetrating peptides (CPPs), typically consist of 6–30 residues, including HIV TAT peptide, penetratin, oligoarginine, transportan, and TP10. Through chemical conjugation or noncovalent complex formation, these structures successfully deliver bioactive and membrane-impermeable molecules into cells. CPPs have also gained attention as an attractive vehicle for the delivery of nucleic acid pharmaceuticals (NAPs), including genes/plasmids, short oligonucleotides, and small interference RNAs and their analogues, due to their high internalization efficacy, low cytotoxicity, and flexible structural design. In this Account, we survey the potential of CPPs for the design and optimization of NAP delivery systems. First, we describe the impact of the N-terminal stearylation of CPPs. Endocytic pathways make a major contribution to the cellular uptake of NAPs. Stearylation at the N-terminus of CPPs with stearyl-octaarginine (R8), stearyl-(RxR)4, and stearyl-TP10 prompts the formation of a self-assembled core–shell nanoparticle with NAPs, a compact structure that promotes cellular uptake. Researchers have designed modifications such as the addition of trifluoromethylquinoline moieties to lysine residues to destabilize endosomes, as exemplified by PepFect 6, and these changes further improve biological responsiveness. Alternatively, stearylation also allows implantation of CPPs onto the surface of liposomes. This feature facilitates “programmed packaging” to establish multifunctional envelope-type nanodevices (MEND). The R8-MEND showed high transfection efficiency comparable to that of adenovirus in non-dividing cells. Understanding the cellular uptake mechanisms of CPPs will further improve CPP-mediated NAP delivery. The cellular uptake of CPPs and their NAP complex involves various types of endocytosis. Macropinocytosis, a mechanism which is also activated in response to stimuli such as growth factors or viruses, is a primary pathway for arginine-rich CPPs because high cationic charge density promotes this endocytic pathway. The use of larger endosomes (known as macropinosomes) rather than clathrin- or caveolae-mediated endocytosis has been reported in macropinocytosis which would also facilitate the endocytosis of NAP nanoparticles into cells.
ISSN:0001-4842
1520-4898
1520-4898
DOI:10.1021/ar200256e