A new SNR with TeV shell-type morphology: HESS J1731-347
Aims. The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731−347 has motivated further observations of the source with the High Energy Stereoscopic System (HESS) Cherenkov telescope array to test a possible...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2011, Vol.531, p.A81 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims. The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731−347 has motivated further observations of the source with the High Energy Stereoscopic System (HESS) Cherenkov telescope array to test a possible association of the γ-ray emission with the SNR. Methods. With a total of 59 h of observation, representing about four times the initial exposure available in the discovery paper of HESS J1731−347, the γ-ray morphology is investigated and compared with the radio morphology. An estimate of the distance is derived by comparing the interstellar absorption derived from X-rays and the one obtained from 12CO and HI observations. Results. The deeper γ-ray observation of the source has revealed a large shell-type structure with similar position and extension (r ~ 0.25°) as the radio SNR, thus confirming their association. By accounting for the HESS angular resolution and projection effects within a simple shell model, the radial profile is compatible with a thin, spatially unresolved, rim. Together with RX J1713.7−3946, RX J0852.0−4622 and SN 1006, HESS J1731−347 is now the fourth SNR with a significant shell morphology at TeV energies. The derived lower limit on the distance of the SNR of 3.2 kpc is used together with radio and X-ray data to discuss the possible origin of the γ-ray emission, either via inverse Compton scattering of electrons or the decay of neutral pions resulting from proton-proton interaction. |
---|---|
ISSN: | 0004-6361 1432-0746 1432-0746 1432-0756 |
DOI: | 10.1051/0004-6361/201016425 |