Experimental four-qubit bound entanglement
Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. Being a peculiar form of entanglement, bound entanglement emerges in certain mixed quantum states. This form of entanglement is not distillable by local operators and...
Gespeichert in:
Veröffentlicht in: | Nature physics 2009-10, Vol.5 (10), p.748-752 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. Being a peculiar form of entanglement, bound entanglement emerges in certain mixed quantum states. This form of entanglement is not distillable by local operators and classical communication. Bound-entangled states are different from both the free entangled (distillable) and separable states. Here we report on the first experimental demonstration of a four-qubit polarization bound-entangled state, the so-called Smolin state. We have fully characterized its entanglement properties. Moreover, we have realized unlocking of the entanglement protocol for this state. The special properties of the Smolin state constitute a useful quantum resource for new multiparty communication schemes.
Bound entanglement is a particular class that is not distillable—that is, it cannot be converted into a pure maximally entangled state by means of local operations and classical communication. A four-qubit bound entangled state, or Smolin state, has now been created experimentally. |
---|---|
ISSN: | 1745-2473 1745-2481 1745-2481 |
DOI: | 10.1038/nphys1372 |