Experimental four-qubit bound entanglement

Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. Being a peculiar form of entanglement, bound entanglement emerges in certain mixed quantum states. This form of entanglement is not distillable by local operators and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2009-10, Vol.5 (10), p.748-752
Hauptverfasser: Amselem, Elias, Bourennane, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. Being a peculiar form of entanglement, bound entanglement emerges in certain mixed quantum states. This form of entanglement is not distillable by local operators and classical communication. Bound-entangled states are different from both the free entangled (distillable) and separable states. Here we report on the first experimental demonstration of a four-qubit polarization bound-entangled state, the so-called Smolin state. We have fully characterized its entanglement properties. Moreover, we have realized unlocking of the entanglement protocol for this state. The special properties of the Smolin state constitute a useful quantum resource for new multiparty communication schemes. Bound entanglement is a particular class that is not distillable—that is, it cannot be converted into a pure maximally entangled state by means of local operations and classical communication. A four-qubit bound entangled state, or Smolin state, has now been created experimentally.
ISSN:1745-2473
1745-2481
1745-2481
DOI:10.1038/nphys1372