Maximal univalent disks of real rational functions and Hermite-Biehler polynomials
The well-known Hermite-Biehler theorem claims that a univariate monic polynomial s has all roots in the open upper half-plane if and only if s=p+iq and q and k-1 has a negative leading coefficient. Considering roots of p \mathbb{R}P^1 \mathbb{C} P^1 as its diameter is the maximal univalent disk for...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2011-05, Vol.139 (5), p.1625-1635 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The well-known Hermite-Biehler theorem claims that a univariate monic polynomial s has all roots in the open upper half-plane if and only if s=p+iq and q and k-1 has a negative leading coefficient. Considering roots of p \mathbb{R}P^1 \mathbb{C} P^1 as its diameter is the maximal univalent disk for the function R=\frac{q}{p} |
---|---|
ISSN: | 0002-9939 1088-6826 1088-6826 |
DOI: | 10.1090/S0002-9939-2010-10778-5 |