Maximal univalent disks of real rational functions and Hermite-Biehler polynomials

The well-known Hermite-Biehler theorem claims that a univariate monic polynomial s has all roots in the open upper half-plane if and only if s=p+iq and q and k-1 has a negative leading coefficient. Considering roots of p \mathbb{R}P^1 \mathbb{C} P^1 as its diameter is the maximal univalent disk for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2011-05, Vol.139 (5), p.1625-1635
Hauptverfasser: KOSTOV, VLADIMIR P., SHAPIRO, BORIS, TYAGLOV, MIKHAIL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The well-known Hermite-Biehler theorem claims that a univariate monic polynomial s has all roots in the open upper half-plane if and only if s=p+iq and q and k-1 has a negative leading coefficient. Considering roots of p \mathbb{R}P^1 \mathbb{C} P^1 as its diameter is the maximal univalent disk for the function R=\frac{q}{p}
ISSN:0002-9939
1088-6826
1088-6826
DOI:10.1090/S0002-9939-2010-10778-5