Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels
Pharmaceuticals are constantly dispersed into the environment and little is known of the effects on non-target organisms. This is an issue of growing concern. In this study, Baltic Sea blue mussels, Mytilus edulis trossulus, were exposed to diclofenac, ibuprofen and propranolol, three pharmaceutical...
Gespeichert in:
Veröffentlicht in: | Aquatic toxicology 2010-08, Vol.99 (2), p.223-231 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pharmaceuticals are constantly dispersed into the environment and little is known of the effects on non-target organisms. This is an issue of growing concern. In this study, Baltic Sea blue mussels,
Mytilus edulis trossulus, were exposed to diclofenac, ibuprofen and propranolol, three pharmaceuticals that are produced and sold in large quantities and have a widespread occurrence in aquatic environments. The mussels were exposed to pharmaceuticals in concentrations ranging from 1 to 10,000
μg
l
−1. The pharmaceuticals were added both separately and in combination. Mussels exposed to high concentrations of pharmaceuticals showed a clear response compared to controls. Firstly, they had a significantly lower scope for growth, which indicates that the organisms had a smaller part of their energy available for normal metabolism, and secondly, they had lower byssus strength and lower abundance of byssus threads, resulting in reduced ability to attach to the underlying substrate. Mussels exposed to lower concentrations showed tendencies of the same results. The concentration of diclofenac and propranolol was quantified in the mussels using both liquid chromatography coupled to mass spectrometry (LC–MS). The measurements showed a significantly higher concentration in the organisms as compared to the water the mussels were exposed to; the uptake reached concentrations two orders of magnitudes higher than found in sewage treatment plant effluents. This study showed that common pharmaceuticals are taken up and negatively affect the physiology of a non-target species at levels of two to three orders of magnitudes higher than found in sewage treatment plant effluents. |
---|---|
ISSN: | 0166-445X 1879-1514 1879-1514 |
DOI: | 10.1016/j.aquatox.2010.04.017 |