Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea

Management of eutrophication in marine ecosystems requires a good understanding of nutrient cycles at the appropriate spatial and temporal scales. Here, it is shown that the biogeochemical processes controlling large-scale eutrophication of the Baltic Sea can be described with a fairly aggregated mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2009-08, Vol.629 (1), p.209-224
Hauptverfasser: Savchuk, Oleg P, Wulff, Fredrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Management of eutrophication in marine ecosystems requires a good understanding of nutrient cycles at the appropriate spatial and temporal scales. Here, it is shown that the biogeochemical processes controlling large-scale eutrophication of the Baltic Sea can be described with a fairly aggregated model: simple as necessary Baltic long-term large scale (SANBALTS). This model simulates the dynamics of nitrogen, phosphorus, and silica driven by the external inputs, the major physical transports, and the internal biogeochemical fluxes within the seven major sub-basins. In a long-term hindcast (1970-2003), the model outputs reasonably matched observed concentrations and fluxes. The model is also tested in a scenario where nutrient inputs are reduced to levels that existed over 100 years ago. The simulated response of the Baltic Sea trophic state to this very large reduction is verified by a similar simulation made with a much more complex process-oriented model. Both models indicate that after initial, rather rapid changes the system goes into much slower evolution, and nutrient cycles would not become balanced even after 130 years.
ISSN:0018-8158
1573-5117
1573-5117
DOI:10.1007/s10750-009-9775-z