Solving independent set problems with photonic quantum circuits

An independent set (IS) is a set of vertices in a graph such that no edge connects any two vertices. In adiabatic quantum computation [E. Farhi, ., Science 292, 472-475 (2001); A. Das, B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061-1081 (2008)], a given graph ( , ) can be naturally mapped onto a many-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-05, Vol.120 (22), p.e2212323120-e2212323120
Hauptverfasser: Yin, Xu-Fei, Yao, Xing-Can, Wu, Biao, Fei, Yue-Yang, Mao, Yingqiu, Zhang, Rui, Liu, Li-Zheng, Wang, Zhenduo, Li, Li, Liu, Nai-Le, Wilczek, Frank, Chen, Yu-Ao, Pan, Jian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An independent set (IS) is a set of vertices in a graph such that no edge connects any two vertices. In adiabatic quantum computation [E. Farhi, ., Science 292, 472-475 (2001); A. Das, B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061-1081 (2008)], a given graph ( , ) can be naturally mapped onto a many-body Hamiltonian [Formula: see text], with edges [Formula: see text] being the two-body interactions between adjacent vertices [Formula: see text]. Thus, solving the IS problem is equivalent to finding all the computational basis ground states of [Formula: see text]. Very recently, non-Abelian adiabatic mixing (NAAM) has been proposed to address this task, exploiting an emergent non-Abelian gauge symmetry of [Formula: see text] [B. Wu, H. Yu, F. Wilczek, Phys. Rev. A 101, 012318 (2020)]. Here, we solve a representative IS problem [Formula: see text] by simulating the NAAM digitally using a linear optical quantum network, consisting of three C-Phase gates, four deterministic two-qubit gate arrays (DGA), and ten single rotation gates. The maximum IS has been successfully identified with sufficient Trotterization steps and a carefully chosen evolution path. Remarkably, we find IS with a total probability of 0.875(16), among which the nontrivial ones have a considerable weight of about 31.4%. Our experiment demonstrates the potential advantage of NAAM for solving IS-equivalent problems.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.2212323120