Flow-driven interfacial waves: an inviscid asymptotic study
Motivated by wind blowing over water, we use asymptotic methods to study the evolution of short wavelength interfacial waves driven by the combined action of these flows. We solve the Rayleigh equation for the stability of the shear flow, and construct a uniformly valid approximation for the perturb...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-11, Vol.976, Article A19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by wind blowing over water, we use asymptotic methods to study the evolution of short wavelength interfacial waves driven by the combined action of these flows. We solve the Rayleigh equation for the stability of the shear flow, and construct a uniformly valid approximation for the perturbed streamfunction, or eigenfunction. We then expand the real part of the eigenvalue, the phase speed, in a power series of the inverse wavenumber and show that the imaginary part is exponentially small. We give expressions for the growth rates of the Miles (J. Fluid Mech., vol. 3, 1957, pp. 185–204) and rippling (e.g. Young & Wolfe, J. Fluid Mech., vol. 739, 2014, pp. 276–307) instabilities that are valid for an arbitrary shear flow. The accuracy of the results is demonstrated by a comparison with the exact solution of the eigenvalue problem in the case when both the wind and the current have an exponential profile. |
---|---|
ISSN: | 0022-1120 1469-7645 1469-7645 |
DOI: | 10.1017/jfm.2023.906 |