Flow-driven interfacial waves: an inviscid asymptotic study

Motivated by wind blowing over water, we use asymptotic methods to study the evolution of short wavelength interfacial waves driven by the combined action of these flows. We solve the Rayleigh equation for the stability of the shear flow, and construct a uniformly valid approximation for the perturb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-11, Vol.976, Article A19
Hauptverfasser: Bonfils, A.F., Mitra, Dhrubaditya, Moon, W., Wettlaufer, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by wind blowing over water, we use asymptotic methods to study the evolution of short wavelength interfacial waves driven by the combined action of these flows. We solve the Rayleigh equation for the stability of the shear flow, and construct a uniformly valid approximation for the perturbed streamfunction, or eigenfunction. We then expand the real part of the eigenvalue, the phase speed, in a power series of the inverse wavenumber and show that the imaginary part is exponentially small. We give expressions for the growth rates of the Miles (J. Fluid Mech., vol. 3, 1957, pp. 185–204) and rippling (e.g. Young & Wolfe, J. Fluid Mech., vol. 739, 2014, pp. 276–307) instabilities that are valid for an arbitrary shear flow. The accuracy of the results is demonstrated by a comparison with the exact solution of the eigenvalue problem in the case when both the wind and the current have an exponential profile.
ISSN:0022-1120
1469-7645
1469-7645
DOI:10.1017/jfm.2023.906