PINstimation: An R Package for Estimating Probability of Informed Trading Models
The purpose of this paper is to introduce the R package PINstimation. The package is designed for fast and accurate estimation of the probability of informed trading models through the implementation of well-established estimation methods. The models covered are the original PIN model (Easley and O&...
Gespeichert in:
Veröffentlicht in: | The R journal 2023-06, Vol.15 (2), p.145-168 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to introduce the R package PINstimation. The package is designed for fast and accurate estimation of the probability of informed trading models through the implementation of well-established estimation methods. The models covered are the original PIN model (Easley and O'Hara 1992; Easley et al. 1996), the multilayer PIN model (Ersan 2016), the adjusted PIN model (Duarte and Young 2009), and the volume-synchronized PIN (Easley, De Prado, and O'Hara 2011; Easley, Lopez De Prado, and O'Hara 2012). These core functionalities of the package are supplemented with utilities for data simulation, aggregation and classification tools. In addition to a detailed overview of the package functions, we provide a brief theoretical review of the main methods implemented in the package. Further, we provide examples of use of the package on trade-level data for 58 Swedish stocks, and report straightforward, comparative and intriguing findings on informed trading. These examples aim to highlight the capabilities of the package in tackling relevant research questions and illustrate the wide usage possibilities of PINstimation for both academics and practitioners. |
---|---|
ISSN: | 2073-4859 2073-4859 |
DOI: | 10.32614/RJ-2023-044 |