Premium control with reinforcement learning

We consider a premium control problem in discrete time, formulated in terms of a Markov decision process. In a simplified setting, the optimal premium rule can be derived with dynamic programming methods. However, these classical methods are not feasible in a more realistic setting due to the dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASTIN Bulletin : The Journal of the IAA 2023-05, Vol.53 (2), p.233-257
Hauptverfasser: Palmborg, Lina, Lindskog, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a premium control problem in discrete time, formulated in terms of a Markov decision process. In a simplified setting, the optimal premium rule can be derived with dynamic programming methods. However, these classical methods are not feasible in a more realistic setting due to the dimension of the state space and lack of explicit expressions for transition probabilities. We explore reinforcement learning techniques, using function approximation, to solve the premium control problem for realistic stochastic models. We illustrate the appropriateness of the approximate optimal premium rule compared with the true optimal premium rule in a simplified setting and further demonstrate that the approximate optimal premium rule outperforms benchmark rules in more realistic settings where classical approaches fail.
ISSN:0515-0361
1783-1350
1783-1350
DOI:10.1017/asb.2023.13