Hadley Cell Size and Strength Responses Depend on Turbulent Drag

The position and strength of the Hadley cell circulation determine the habitable zones in the tropics, yet our understanding of and ability to predict changes in the circulation is limited. One potentially important source of uncertainty is the dependence of the Hadley cell on turbulent drag. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2023-04, Vol.80 (4), p.1047-1064
Hauptverfasser: Flynn, Clare Marie, Mauritsen, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The position and strength of the Hadley cell circulation determine the habitable zones in the tropics, yet our understanding of and ability to predict changes in the circulation is limited. One potentially important source of uncertainty is the dependence of the Hadley cell on turbulent drag. Here, the sensitivity of the Hadley cell and associated features such as the intertropical convergence zone to variations in the magnitude of the turbulent drag is explored with an atmospheric general circulation model in aquaplanet configuration. The tropical circulation and precipitation, and extratropical features such as the polar jet stream, displayed a strong sensitivity to the strength of the parameterized turbulent drag, with distinct low- or high-drag regimes. However, the response of the meridional heat transport produced a surprising departure from previous expectations: with greater drag, simulations exhibited less heat transport than low-drag simulations, which is in the opposite sense to that from Held and Hou. This may be due to the energetic constraints in the present model framework. When exposed to a uniform global warming, the response of the ITCZ precipitation depends strongly on the choice of drag, whereas most simulations exhibit a poleward expansion of the subtropics.
ISSN:0022-4928
1520-0469
1520-0469
DOI:10.1175/JAS-D-22-0153.1