Smooth lattice orbits of nilpotent groups and strict comparison of projections

This paper provides sufficient density conditions for the existence of smooth vectors generating a frame or Riesz sequence in the lattice orbit of a square-integrable projective representation of a nilpotent Lie group. The conditions involve the product of lattice co-volume and formal dimension, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2022-09, Vol.283 (6), p.109572, Article 109572
Hauptverfasser: Bédos, Erik, Enstad, Ulrik, van Velthoven, Jordy Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides sufficient density conditions for the existence of smooth vectors generating a frame or Riesz sequence in the lattice orbit of a square-integrable projective representation of a nilpotent Lie group. The conditions involve the product of lattice co-volume and formal dimension, and complement Balian–Low type theorems for the non-existence of smooth frames and Riesz sequences at the critical density. The proof hinges on a connection between smooth lattice orbits and generators for an explicitly constructed finitely generated Hilbert C⁎-module. An important ingredient in the approach is that twisted group C⁎-algebras associated to finitely generated nilpotent groups have finite decomposition rank, hence finite nuclear dimension, which allows us to deduce that any matrix algebra over such a simple C⁎-algebra has strict comparison of projections.
ISSN:0022-1236
1096-0783
1096-0783
DOI:10.1016/j.jfa.2022.109572