On Church’s thesis in cubical assemblies

We show that Church’s thesis, the axiom stating that all functions on the naturals are computable, does not hold in the cubical assemblies model of cubical type theory. We show that nevertheless Church’s thesis is consistent with univalent type theory by constructing a lex modality in cubical assemb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2022-03, Vol.31 (10), p.1185-1204
Hauptverfasser: Swan, Andrew W., Uemura, Taichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that Church’s thesis, the axiom stating that all functions on the naturals are computable, does not hold in the cubical assemblies model of cubical type theory. We show that nevertheless Church’s thesis is consistent with univalent type theory by constructing a lex modality in cubical assemblies such that Church’s thesis holds in the corresponding reflective subuniverse.
ISSN:0960-1295
1469-8072
1469-8072
DOI:10.1017/S0960129522000068