Super-resolved spatial transcriptomics by deep data fusion
Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method c...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2022-04, Vol.40 (4), p.476-479 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method characterizes the transcriptome of micrometer-scale anatomical features and can predict spatial gene expression from histology images alone.
The low resolution of spatial transcriptomics is substantially improved by including histology images. |
---|---|
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/s41587-021-01075-3 |