Super-resolved spatial transcriptomics by deep data fusion

Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2022-04, Vol.40 (4), p.476-479
Hauptverfasser: Bergenstråhle, Ludvig, He, Bryan, Bergenstråhle, Joseph, Abalo, Xesús, Mirzazadeh, Reza, Thrane, Kim, Ji, Andrew L., Andersson, Alma, Larsson, Ludvig, Stakenborg, Nathalie, Boeckxstaens, Guy, Khavari, Paul, Zou, James, Lundeberg, Joakim, Maaskola, Jonas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current methods for spatial transcriptomics are limited by low spatial resolution. Here we introduce a method that integrates spatial gene expression data with histological image data from the same tissue section to infer higher-resolution expression maps. Using a deep generative model, our method characterizes the transcriptome of micrometer-scale anatomical features and can predict spatial gene expression from histology images alone. The low resolution of spatial transcriptomics is substantially improved by including histology images.
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-021-01075-3