Search for R-parity-violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using √s=13 TeV proton–proton collision data

A search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b-tagged jets is presented. The search uses 139fb −1 of √s=13 TeV proton–proton collision data collected by the ATLAS experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2021-11, Vol.81 (11)
Hauptverfasser: Andrean, Stefio Y., Backman, Filip, Barranco Navarro, Laura, Bohm, Christian, Clement, Christophe, Hellman, Sten, Ingebretsen Carlson, Tom, Lou, Xuanhong, Milstead, David A., Moa, Torbjörn, Nelson, Michael E., Pasuwan, Patrawan, Pereira Sanchez, Laura, Shaikh, Nabila W., Silverstein, Samuel B., Sjölin, Jörgen, Strandberg, Sara, Strübig, Antonia, Valdés Santurio, Eduardo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b-tagged jets is presented. The search uses 139fb −1 of √s=13 TeV proton–proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based on observables at medium jet multiplicity, to predict the b-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine-learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine-learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-021-09761-x