Analytical solution of stochastic resonance in the nonadiabatic regime

We generalize stochastic resonance to the nonadiabatic limit by treating the double-well potential using two quadratic potentials. We use a singular perturbation method to determine an approximate analytical solution for the probability density function that asymptotically connects local solutions i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2021-10, Vol.104 (4), p.044130-044130, Article 044130
Hauptverfasser: Moon, Woosok, Giorgini, L. T., Wettlaufer, J. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize stochastic resonance to the nonadiabatic limit by treating the double-well potential using two quadratic potentials. We use a singular perturbation method to determine an approximate analytical solution for the probability density function that asymptotically connects local solutions in boundary layers near the two minima with those in the region of the maximum that separates them. The validity of the analytical solution is confirmed numerically. Free from the constraints of the adiabatic limit, the approach allows us to predict the escape rate from one stable basin to another for systems experiencing a more complex periodic forcing.
ISSN:2470-0045
2470-0053
2470-0053
DOI:10.1103/PhysRevE.104.044130