Analytical solution of stochastic resonance in the nonadiabatic regime
We generalize stochastic resonance to the nonadiabatic limit by treating the double-well potential using two quadratic potentials. We use a singular perturbation method to determine an approximate analytical solution for the probability density function that asymptotically connects local solutions i...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2021-10, Vol.104 (4), p.044130-044130, Article 044130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize stochastic resonance to the nonadiabatic limit by treating the double-well potential using two quadratic potentials. We use a singular perturbation method to determine an approximate analytical solution for the probability density function that asymptotically connects local solutions in boundary layers near the two minima with those in the region of the maximum that separates them. The validity of the analytical solution is confirmed numerically. Free from the constraints of the adiabatic limit, the approach allows us to predict the escape rate from one stable basin to another for systems experiencing a more complex periodic forcing. |
---|---|
ISSN: | 2470-0045 2470-0053 2470-0053 |
DOI: | 10.1103/PhysRevE.104.044130 |